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Abstract-An analytical computation is performed of the energy dissipated by a thin tube made of
a work-hardening material, subjected to both a static compressive load and a dynamic torsional
load.

1. INTRODUCTION

The issue ofenergy dissipation in elastoplastic materials is interesting from both a theoretical
and practical point of view. On the theoretical side it is important to test the existing
theories of dissipation (Coleman and Owen, 1977; Silhavy, 1980a,b) in order to develop a
consistent thermodynamic theory for elastoplastic materials (Lucchesi, 1993). On the pract­
ical side, dissipation is a crucial feature, for instance, in the design of antiseismic dampers.

Despite its importance, there have been to our knowledge no reports of explicit
calculations of the energy dissipated from a thin tube under conditions of loading and
unloading in stress regimes that are more complex than the monoaxial case.

In this paper we present an analytical computation of a homogeneous, infinitesimal
deformation of a thin tube, subjected to both a normal strain that is constant in time, due
to a permanent load, and a torsional strain varying in time with a prescribed law. The
hypothesis that the strain is everywhere the same considerably simplifies the explicit com­
putation of the energy dissipated, because the solution of the equilibrium problem reduces
to solving the system of ordinary differential equations that describes the constitutive
response. The explicit solution of this system is immediate in the case of monoaxial stress,
which is the one almost exclusively examined in applications (Su et al., 1989). More complex
stress regimes are also interesting from the point of view of applications, because the
dissipating devices are entrusted with both the dynamic loads and part of the permanent
loads, and such loads generally have different directions.

In the present paper the hypothesis is made that the material comprising the tube's
wall is an initially isotropic von Mises elastoplastic material (Lucchesi et aI., 1992). For
materials with combined work hardening, the explicit computation of the dissipated energy
is laborious; therefore we carry out separate computations for isotropic and kinematic
hardening mechanisms; then, we compare our results with the case of an ideally plastic
material. Finally, as an example, a more detailed analysis is made of the situation in which
the torsional strain varies in time according to a sine law.

2. CONSTITUTIVE RELATIONSHIPS

The materials we deal with are well-known elastoplastic materials with a von Mises
yield criterion, associated flow rule and isotropic and kinematic hardening. In this section
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we summarize some constitutive relationships, written in the strain space according to our
pourposes. We refer the reader to Lucchesi et al. (1992) for a detailed exposition of these
results. We begin with a few notations.

We use Sym to denote the space of all the symmetric tensors of the second order, and
IE Sym to indicate the identity tensor. For each A ESym, Ao = A - (l/3tr A)I, with tr A the
trace of A, denotes the deviator of A; Symo is the subspace of Sym made up of all the
deviatoric tensors. For A, BE Sym, A' B = tr (AB) is the inner product of A and B;
IIAII = (A' A)1/2 is the norm of A.

A deformation process is a continuous and piecewise continuously differentiable
mapping, E: [0, r] -+ Sym, with E(O) = 0, whose value at a typical instant r is interpreted
as the current infinitesimal strain, i.e. the symmetric part of the displacement gradient,
measured with respect to a fixed reference configuration and at a fixed material point. For
each instant r E[0, r],

E(r) = {AE Sym IllAo -C(r)11 ~ p(r)}, (1)

with C(r) ESymo, is the elastic range corresponding to the deformation process E. E(r) is a
cylinder in Sym, whose base E(r)o = {AoESymoIIIAo-C(r)11 ~ p(r)} is the ball of Symo
with centre C(r) and radius p(r). It is assumed that E(r) contains the current deformation
E(r); its points are interpreted as all the infinitesimal deformations of the reference con­
figuration that are elastically attainable starting from the current configuration.

The plastic deformation process corresponding to E is a mapping EP: [0, r] -+ SYillo
that at each instant r delivers the value EP(r) of the (unique) deformation belonging to
E(r)o to which a null stress corresponds.

The Odqvist parameter

(r) = J: II EP(r') II dr' (2)

measures the length of the plastic deformation process until instant r. We accept the usual
associated flow rule:

(3)

where

(4)

is the outward unit tensor to oE(r)o at E(r)o.
For each rE[O, r], the stress at instant r, during the deformation process E is given by

T(r) = E(E(r)-EP(r» = 2p(E(r)-EP(r»+A(trE(r»I, (5)

with E the elasticity tensor and A, ,u the Lame' moduli of the material. From eqn (5) we
obtain

T(r)o = 2,u(E(r)o -EP(r»; trT(r) = 3X trE(r), (6)

where X = 1/3(2,u+3A) is the bulk modulus.
Finally we accept the following hardening rules. There exist three material constants,

Po, f3 and 1], with



such that
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Po > 0, /3 ~ 0, '1 ~ 0,

p(r) = p«((r)) = Po + /3(r) (isotropic hardening rule),

C(r) = (I +'1)EP(r) (kinematic hardening rule).
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(7)

(8)

(9)

In particular, if both /3 = 0 and YJ = 0, the material is said to be ideally plastic.
The evolution of the plastic deformation is governed by the following relationship

(Lucchesi et al., 1992) :

{

oif II E(r)o -C(r) II < p«((r))

. 0 if II E(r)o -C(r) II = p«((r)) and N(r)' E(r)o ~ 0
(r) = . .

(1 +'1+/3)-IN(r) 'E(r)o

if II E(r)o -C(r) II = p«(r)) and N(r)' E(r)o > 0

(IOa-e)

The third condition in eqn (10) is called the plastic loading condition. Relationships (3), (4)
and (10) can be conveniently written as a single equation. Indeed, if we put

we get

X(r) = (E(r)o -C(r)),

{

E(r)O if IIX(r) II < p«((r))

. E(r)o if II X(r) II = p(((r)) and X(r)' E(r)o ~ 0
X(r) = . .

E(r)o -Kp~2(((r))(X(r)'E(r)o)X(r)

if II X(r) II = p«((r)) and X(r)' E(r)o > O.

(II)

(12)

(l3a-e)

Moreover, since the material is supposed to be initially isotropic, we have that EP(O) = 0,
so therefore

X(O) = O. (14)

In the applications considered hereafter, the differential equation (13) with the initial
condition (14) has one, and only one, solution; its integration makes it possible to determine
EP, with the help of eqns (9) and (11), and the stress can then be calculated by means of
eqn (6). For each deformation process E, let

w[r"r2] = f"T(r)'E(r)dr
'I

(15)

be the work per unit volume done by internal forces from instant r, to instant r2' It is
known that (Lucchesi, 1993)

w[r 10 r2] = H(E(r2) - EP(r2)) . E[E(r2) - EP(r2)]

- (E(r,) - EP(rl))' E[E(r,) -EP(rl)]} + IlYJ(IIEP(r2) 11
2-IIEP(r,) f)

+21l{w«((r2)) -w(((rl))}' (16)
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where

w'(O = p(O = Po+f3(. (17)

In particular, if E(r2) = E(r,) and EP(r2) = EP(r l), it can be deduced from eqns (16) and
(17) that

(18)

3. FORMULATION OF THE PROBLEM

Let {el,ebe3} be an orthonormal base of R 3
• Let us consider a thin tube T (Fig. 1)

with its generatrix parallel to el, constrained in such a way that, at the points of base B 1,

displacements both in the direction of the tangent to oBI and in that of el are prevented.
The hypothesis is made that the tube is subjected to a given constant load feI. uniformly
distributed on the base B2 , as well as to a torsional strain varying in time in a prescribed
manner. Therefore, since the deformation is supposed to be homogeneous, in each point p
of the wall of T with the outward normal parallel to e3 the deviatoric deformation process
is

E(r)o = ell (r)A+<p(r)B, (19)

where

(20)

and r --+ <per) is a function assigned in the interval [0, f] which is supposed to be continuously
differentiable and null for r = 0. From eqns (19) and (5) and from considerations on the
equilibrium of T, the expression of the stress

(21)

can be deduced and therefore, from eqns (19), (21) and (6), for the deformation process
we obtain

11, =0

1-1-------- L ~------~
J9,

/tr!"""~_>ti_------.~~~--~~~~~~~__\

~1'\-\-=-+-c_+!+--~~-------·-·~~~~~~~_\4II-1

Fig. 1. Thin tube subjected to constant loadfe , and torsonal strain qJ.
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E(r) = el)('r)el ®el +~«3x)-'f-e,,(r»)(e2®e2+e3 ®e3)

+o/(r)(e] ® e2 +e2 ® ej), (22)

where

(23)

Let us suppose that, for r E [0, rn r -+ o/(r) is an increasing function and let rj E [0, rf] be
the instant of first yielding, i.e., the maximum value of r for which we get

IIE(r)o II ~ Po·

For r ~ rl we have, in view ofeqns (19), (21) and (6),

and therefore rl can be obtained from the equation

(24)

(25)

(26)

a consequence of eqns (19) and (23).
For r E [r), rt] the plastic loading condition is verified. In order to calculate the Odqvist

parameter, let us begin by observing that, in view of eqns (3), (10) and (19), we can write

(27)

moreover, from eqns (19) and (27) we get

(28)

Therefore, taking into account eqn (11), there exist two functions r H XI (r) and r H X2(r),
such that

X(r) = XI (r)A+X2(r)B.

Since we have

from eqns (lOc), (28) and (29) we obtain

and from eqns (l3c), and (21)

In view of eqns (21) and (6), we have

(29)

(30)

(31 )

(32)

(33)
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(34)

therefore, since (CI I (r) - C) I (r)) is constant, from eqns (II), (9), (19) and (27) we obtain

(35)

From eqn (32), bearing in mind eqn (35) and the plastic loading condition

(36)

we can deduce

(37)

With the help of eqns (36) and (37), by setting

(38)

eqn (31) becomes

(39)

By differentiating eqn (36) with respect to r, we get

(40)

and, with the help of this, from eqn (33) we get

Substituting eqn (39) into eqn (41). we have

Moreover, from eqns (10), (24), (II), (8), (9) and (38) we can deduce

(43)

Equations (39) and (42), together with the initial conditions (43), constitute a system of
differential equations, the integration of which makes it possible to calculate ( and Xz in
the interval [r I, rn ; p(D, XI and Xc can then be calculated from eqns (8), (36) and (38) and,
in their turn, these make it easy to determine E, E P and T. In the case that is more interesting
in applications, i.e. that in which tp is not a monotonous function throughout the interval
[0, f], the computation procedure described in this section can be applied to each interval
[rk, rt] in which the plastic loading condition is verified, provided the initial conditions (43)
are substituted by the following:

(44a,b)



Let us suppose we get
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4. KINEMATIC HARDENING

tl > 0, f3 = O.
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(45a,b)

Then, for rE [rb rtL the differential equations (39) and (42) that rule the problem, become

(46)

(47)

from which, eliminating ep and integrating, we obtain

(48)

where

(49)

Obtaining X2 from eqn (48) and substituting in eqn (46), we have

(50)

where

g(O = J1-exp (~211Po \ (( -c\)) = v l--=-~exp [--2tlPo \ (( -((rd)] (51)

with

(52)

Integrating this last equation, with the initial condition (44)\, we obtain (Brychkov et ai"
1989)

Equation (53) constitutes an implicit link between ( and r. On the other hand, in many
applications the kinematic hardening parameter 11 is much smaller than unity (Bennati and
Lucchesi, 1991) and this can be used to obtain an approximate expression of ( as a function
of r. Indeed, if we put

with a direct computation, we obtain

I/J(O)=y'l-ct,

Similarly, given

SAS 32-19·[

(54)

(55)

(56)

(57)
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Vi(O) = In {(l +J I - a) - 1 (I - J I -ex)},

Vi'(O) = -2«(-'(Td)(Po~)-I,

Vi"(O) = 2a«( -(Td)2(p5(l-a)~)-I.

(58)

(59)

(60)

(61)

In view of eqns (54)-(61), it can be shown from eqn (53) that,

where the sign ~ indicates that the relationship holds within an error of order (J(lJ). From
eqn (62) we obtain

(63)

with

(64)

(65)

In order to calculate the internal work done in the interval [Tb T], it is also necessary to
know E and EP. For this purpose, we observe that eqns (38) and (48) make it possible to
write

from which, in view of eqn (63), it can be shown that

and therefore

(68)

From eqns (II), (9), (28) and (29) we can deduce

(69)

and therefore, in view of eqn (68),

Moreover, from eqns (36), (67) and (52) we can deduce that

(71)

where
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Since, in view of eqns (II) and (34), we have

from eqn (71) we obtain
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(72)

(73)

(74)

This equation makes it possible to calculate ell(r), with the help of eqn (34). In particular,
if the material is ideally plastic, putting 17 = 0 in eqns (63), (68), (70), (71) and (74) we
obtain, for r E [rb rt],

XI (r) = ~Uip),

and, from these last two equations, we can deduce that

ell (r) = ~U!J1)Xc(rd I ([J(r).

(75)

(76)

(77)

(78)

(79)

(80)

Finally, when E(r), EP(r) and ((r) are known, the internal work done in the interval [rb r]
can be calculated from eqn (16), bearing in mind that

(81)

follows from eqn (45b).

5. ISOTROPIC HARDE!\[NG

Let us suppose that we get

17 = O. fJ> O.

From eqns (39), (42) and (82) we can deduce, for r E [rk' It].

from which

(82)

(83)

(84)

I ~

Xc' (85)

Integrating eqn (85) in the interval [Ik' r] we obtain
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(86)

where rJ. is defined by eqn (52). From eqns (83), (86) and the relationship 2f3p( = (p2) we
obtain

(87)

Integrating this latter equation on interval [Tk, T], we have (Brychkov et al., 1989)

with

(89)

As in the case of kinematic hardening, an implicit relation between ( and T has been
obtained. Observing that, in the applications, f3 is often much smaller than units, with a
procedure similar to that used in the previous section we obtain

where the sign ~ indicates that the relationship holds within an error of order CJ(f3). It can
be shown from eqns (90) and (43) that

(91)

(p being defined by eqn (64).
The calculation of el' 2 can be carried out, observing that from eqns (86), (8) and (44b)

it is easy to obtain

from which

(93)

which, in its turn, implies

(94)

In order to calculate el'l, we observe that, in the case of isotropic hardening,
XI (T) = ell (T) -el'l (T) is constant. Then, from eqn (37), and in view of the results obtained
in the present section, we can show that

(95)

which, integrated over the interval [Tkl T], gives

el'l (T) ~ el'l (Td +~(jj.u)x2(Tk)-1(<p(T) -rp(Td)[I-~f3ph2(Td-3(rp(T)

+ 3rp(Tk) - 2X2 (Tk))], (96)

from which, with the help ofeqn (34), ell(T) can be immediately calculated.
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In this case, too, when E, EP and ( are known, the internal work can be calculated
from egn (16) ; for this purpose it should be noted that, in view of egns (17), (82) and (91),
we have

(97)

where

6. SINUSOIDAL DEFORMATION PROCESS

In this section we shall examine the case in which the behavior of the torsional strain
to which the thin tube is subjected is sinusoidal (Fig. 2).

<per) = (sinr, (99)

with ( an assigned constant.
First of all, we shall determine the intervals of time [rk' ri] during which the plastic

loading condition is verified. Since <P takes its extremal values at instants rl, we have

ri=~7T(2k-l), k=I,2,3, .... (100)

Moreover, since the behaviour of the material is elastic in the interval [rl- 1, rk], we get

(101 )

from which we obtain

(102)

which, since e)2(ri-l) = e)2(rk) is known, makes it possible to calculate the instant of kth
yielding

(103)

We shall now go on to calculate the expression for the internal work in this load condition.
First of all, let us suppose the material hardens kinematically so that egn (45) holds. We
see that in intervals [rb ri], in view of egn (36), the point having coordinates

fJJ

+ ~ ------------:::;---..,.-.-.:.=--------------------------------------------------------
/'

/

-; --------------------------- ~ L..._._~ _

Fig. 2. Sinusoidal law of torsional strain.
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Fig. 3. Deformation process and hysteresis diagram for kinematic hardening.

(-.jhl' fiX2) belongs to the circumference with centre in the origin and radius Po (Fig. 3).
Given that Tk E [,t, 'k+]] expresses the instant at which 6]2 is null, we deduce from eqn (16)
that the internal work done after k oscillations is

With the help of eqn (63), we obtain the Odqvist parameter

k

((rt) ~ 2.:: (p(r,~)hn(r,~),
1/=)

where, in the light of eqns (99), (100) and (l 01). we have

Moreover, from eqn (68) we can deduce

( *)_ ()fl I -I ()-2(2 2 ()2)e(*)lX2 rk - X2 rkl +;i'lPo X2 rk Po - X2 'k ~P 'k J'

(104)

(105)

(106)

(107)

from which, in its turn, we obtain e~ 2 (,t). bearing in mind that for eqns (11), (9), (29) and
(99) we have

(108)

The equations that have just been found make it possible to calculate ((,:) for each k > 1
and, therefore. the first term on the right-hand side of eqn (104) ; we shall now go on to
calculate the second term. In view of eqn (27), we have

(109)

to begin with, we see that in eqn (104) the quantity II EP(rt) f is found to be multiplied by
1], so that in order to calculate the internal work within an error of the order 6(1]), we can
use eqns (77) and (79) deduced for an ideally plastic material; also, while Ie) I (,)1 is an
increasing function of r, it follows from eqn (108) that e) 2 (,:) oscillates around zero, so
that, for a fairly large number of cycles, its contribution in the calculation of IIEP(r:) 11

2 can
be disregarded. Finally. we can write
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where, for eqns (79) and (107),
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(110)

(III)

with the first term elf I (rf) calculated from eqn (79).
The procedure for the computation of the internal work proves to be somewhat

laborious because, for each k, the calculation of the instant rk of the kth yielding requires
knowledge of elf 2 (rt_I)' It can therefore be of some use in applications to follow a method
that makes it possible to give an estimate from below an upper bound of the internal work
without knowing the values of rk for k > I. For this purpose, we see that with the help of
eqns (103) and (108), we obtain

(112)

where SX) is the limit of the sequence (_I)k sin (rk) for k -. 00, which corresponds to the
situation in which XI = 0 (Fig. 3). In view of eqns (26) and (99), we find that

(113)

From eqns (106), (112) and (113) it follows that

(114)

where

(115)

From eqns (114), (115), (63) and (26) it follows that

An estimate can be deduced for II EP(rt) II too. To begin with, we see that (oc coincides with
the value of ( at instant rf in the case in which! = 0, and therefore for each k, we have

(117)

Moreover, for each k, elf I (r:) has the same sign as j~ so that in view of eqns (112), (115),
(111) and (117), we have

(118)

From this last inequality, taking into account eqns (79) and (115), we obtain
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Fig. 4. Deformation process and hysteresis diagram for isotropic hardening.

(119)

from which we immediately obtain the required estimation of IIEP(r;r)ll. In the case of
isotropic hardening (Fig. 4), the internal work after k oscillations is, for eqn (16),

11'[0, fd = 2J.lw(((rt)),

where w(((rt)) can be calculated with the help ofeqn (97). We thus get

k

w(((rt)) ~ Po I (p(r/~)qll(r~),
11=1

(120)

(121)

where (p(r~) can be calculated from eqn (106), since the instants of yielding, rko are known.
These instants can be easily obtained from eqn (103), with the help of eqns (93) and (94).

In this case, we cannot obtain an estimate of the internal work in the same way as the
one obtained in the case of kinematic hardening, because as the number of cycles increases,
the radius of the elastic range also increases up to a point at which further plastic loading
situations are prevented, as can be seen in Fig. 4.

Lastly, let us examine the case of an ideally plastic material (Fig. 5). In view of eqns
(75) and (16), we have

Fig. 5. Deformation process and hysteresis diagram for ideal plasticity.
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k

w[O,fd = 2,uPo«((,f)+ L (p(,~)).
n=2

2905

(122)

We see that, during each plastic loading phase, X2 is constant, as can be easily deduced
from Fig. 5, so that

(123)

Moreover, in view of eqns (101) and (102), we have

(124)

(125)

and these, together with eqn (100), imply that for k > I

where, in view of eqns (26) and (99),

. () .1'-1 /1 2 l(fi'2)2
Sill '1 =" v 2PO - '3 .! ,u .

(126)

(127)

From eqns (126) and (127), the following expression is obtained for the internal work:

Moreover, we deduce from eqns (111) and (126)

er; I(,n = K/I,uH2k-IHsin 'I )-1 (I-sin 'I)

and therefore the longitudinal displacement per unit length, in view of eqn (127), is

(128)

(129)

In order to have a prompt understanding of the behaviour of the internal work and the
longitudinal plastic deformation, we define the following adimensional quantities:

(131 )

(132)
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16 +----,---,...---,...---..-...TTr1

14 +---+---+---+----rft-/'+-IHt-1

12 +---+---+----+-1'-+--1'-1+-+-+++1

10 +---+-

4+-~=F_--f__-~L--~-+-__I_I

F1.00.80.6
o -I-_-+G~o1~=====+==--l----I--_

o 0.2 0.4

Fig. 6. Adimensional curves of W,(F. G) and £'Z(T G).

from which it is easy to obtain the family of curves

(133)

represented in Fig. 6.
In applications, we know the values of F and G as functions of the material constants

Po, J1 and the loads/, ¢. Thus, we can calculate the internal work and the longitudinal plastic
deformation for each cycle wi th the help of relationships (131) and the curves in Fig. 4.
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